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ABSTRACT		
One	 of	 the	 most	 important	 goals	 of	 this	 research	 effort	 is	 to	 improve	 the	 efficiencies	 of	
computational	 fluid	 dynamic	 (CFD)	 tools	 by	 focusing	 on	 the	 development	 of	 a	 numerical	
procedure	 with	 improved	 flow	 physics	 capturing	 capabilities.	 	 The	 intent	 is	 to	 create	 a	
numerical	procedure	that	solves	the	Navier-Stokes	(NS)	Equations	under	a	wide	variety	of	initial	
and	 boundary	 conditions,	 efficiently	 and	 accurately.	 	 This	 new	 scheme,	 which	 was	 initially	
described	 in	 Ref.	 [1–8]	 and	 referred	 to	 as	 the	 Integro-Differential	 Scheme	 (IDS),	 has	 several	
favorable	qualities.	 	For	 instance,	the	scheme	is	developed	based	on	a	unique	combination	of	
the	differential	and	 integral	 forms	of	 the	Navier-Stokes	Equations,	hence	the	name,	 IDS.	 	The	
focus	 of	 this	 paper,	 however,	 is	 on	 the	 qualitative	 evaluation	 of	 the	 IDS	 solution	 that	 were	
generated	 from	 a	 set	 of	 ‘commonly	 described’	 complex	 fluid	 dynamic	 problems.	 Among	 the	
fluid	dynamic	problems	chosen	are	(i)	the	‘inviscid-viscous	boundary	layer'	interaction	problem	
at	the	leading	edge	of	a	hypersonic	flat	plate,	(ii)	the	‘supersonic	rearward	facing	step’	problem,	
and	 (iii)	 the	 interactions	 due	 to	 the	 ‘sonic	 jet	 injection	 into	 a	 supersonic	 cross-flow'.	 	 It	 is	 of	
interest	 to	 note,	 the	 IDS	 procedure	 does	 not	 rely	 on	 turbulence	 models,	 and	 as	 such,	 in	
analyzing	the	IDS	results	of	the	three	selected	fluid	dynamic	problems	no	such	considerations	
are	 addressed.	 	 Notwithstanding	 the	 lack	 of	 turbulence	 models,	 overall	 the	 IDS	 results	
compares	extremely	well	with	the	available	experimental	data.	

INTRODUCTION	
The	NS	equations	are	a	coupled	set	partial	differential	equations	(PDE)	that	must	be	solved	with	
an	 appropriate	 set	 of	 initial	 and	 boundary	 conditions.	 These	 coupled	 PDEs	 represent	
complicated	 sets	 of	 boundary	 value	 problems	 of	 the	 type	 that	 may	 manifest	 themselves	 in	
either	elliptic,	parabolic,	hyperbolic	or	combinations	of	the	aforementioned	types.		In	general,	
these	 types	 of	 PDEs	 are	 complicated	 and	 do	 not	 lend	 themselves	 to	 analytic	 solutions.		
Additionally,	aerospace	designers	are	currently	demanding	improved	solutions	to	fluid	dynamic	
problems	 under	 conditions	 that	 cannot	 be	 duplicated	 with	 existing	 experimental	 facilities.	
Hence,	the	only	way	to	obtain	reasonable	information	on	these	fluid	flow	problems	lies	in	the	
predictions	 obtained	 from	 computational	 fluid	 dynamics	 (CFD)	 procedures.	 	 In	 the	 literature,	
Refs.	 9–18,	 there	 are	 many	 well-established	 numerical	 schemes,	 with	 many	 strengths	 and	
weaknesses	in	relations	to	the	current	needs	of	the	fluid	dynamic	community.		However,	even	
though,	these	schemes	have	led	to	significant	improvements	in	the	art	of	CFD,	they	are	still	fall	
short	in	meeting	demands	posed	by	the	fluid	dynamic	community.		For	instance,	there	are	still	
large	efficiencies	and	expenses	when	it	comes	to	‘gridding’	and	‘numerically	evaluating’	realistic	
engineering	 configurations.	 	 Besides,	 there	 are	 still	 great	 uncertainties	 when	 it	 comes	 to	
evaluating	 the	 detail	 physics	 associated	 with	 many	 ‘inviscid-viscous’,	 and	 ‘shock-viscous’	
interactions.		The	focus	of	this	paper	is	on	the	evaluation	of	the	IDS	scheme	in	relations	to	its	
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authors	claims	of	delivering	robust,	efficient	and	accurate	numerical	solutions	under	a	variety	
of	fluid	dynamic	problems.	

THE	NAVIER-STOKES	EQUATIONS	
The	 equations	 that	 govern	 fluid	 flows	 are	 the	 continuity,	momentum	 and	 energy	 equations.		
These	equations	were	independently	constructed	by	Navier	(1827)	and	Stokes	(1845),	and	are	
referred	to	as	the	Navier-Stokes	equations.	 	 In	this	research,	the	integral	forms	of	the	Navier-
Stokes	 equations,	 Refs.	 [9,	 12,	 13,	 19],	 are	 of	 paramount	 importance.	 	 The	 continuity,	
momentum	and	energy	equations	are	listed	as	follows:	
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In	 Equations	 (1)	 the	 symbols; tv,,r 	 represent	 the	 density,	 the	 volume	 of	 a	 control	 fluid	
element,	 and	 time,	 respectively.	 	 In	 addition,	 the	 symbols,	 V ,	 sd 	 and	 q! ,	 in	 equations	 (1–3)	
represent	 the	vector	quantities	of	 the	 fluid	velocity,	 the	control	volume	surface	and	the	 local	
heat	 transfer	 rate.	 	 Further,	 in	 this	 research,	 fluid	 velocity	 and	 the	 surface	 element	 are	
described	through	the	use	of	vector	quantities	as	follows:	
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kqjqiqq zyx !!!! ++= 	 	 	 	 	 	 (6)	
In	equations	(2)	and	(3),	the	symbol,	P,	represents	the	pressure	and	the	symbol, ,t̂ 	represents	a	
symmetric	 tensor	 that	 defines	 the	 various	 components	 of	 the	 local	 viscous	 stresses.	 	 This	
symmetric	tensor	is	described	by	the	equation:	
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where	 the	 symbols	 of	 the	 six	 independent	 components,	 zyzxyxyyxyxx tttttt ,,,,, 	 and zzt ,	 are	 the	
local	shear	stress	elements	that	were	defined	in	Ref.	[9,	12,	13]	as	follows:	
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The	symbols,	 yx qq !! , and	 zq! ,	in	equation	(6)	represent	the	components	of	the	heat	flux	vector	in	
the	x-	,	y-,	and	z-directions,	respectively.		These	components	are	defined	by	Fourier’s	law,	and	
expressed	mathematically	as,		
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The	symbols,	P	and	E,	in	equations	(2)	and	(3)	are	defined	as	follows:	
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where	 R	 is	 the	 gas	 constant.	 	 The	 symbols,	 µ,	 and	 k,	 represents	 the	 viscous	 and	 thermal	
properties	of	the	fluid	of	interest.		In	this	analysis,	the	viscosity	of	the	fluid	is	evaluated	through	
the	use	of	Sutherland’s	law9,	
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In	the	case	of	3D	aerodynamic	analysis,	the	Navier-Stokes	equations	(1)–(16)	defined	above	
can	be	treated	as	a	closed	system	of	five	equations	relative	to	five	unknowns.		These	unknowns	
are	the	following	five	primitive	flow	field	variables:	 [ ]Twvu ,,,,r .	It	is	of	interest	to	note	that	
equations	(1	-	16)	generates	a	unique	solution	set,	only	when	an	appropriate	set	of	initial	and	
boundary	conditions	are	provided.	Refer	to	Ref	[12,	13]	for	further	details.	

THE	INTEGRO-DIFFERENTIAL	FORMULATION	
In	 the	Cartesian	Coordinates,	 a	 typical	 fluid	 flow	 field	 is	 confined	 to	 a	 rectangular	block,	 and	
represented	by	a	rectangular	prism.		In	the	IDS	framework,	this	spatial	domain	is	divided	into	a	
collection	of	elementary	cells.		Each	cell	is	chosen	as	infinitesimal	rectangular	prisms,	with	unit	
normal,	ñ,	in	the	x,	y,	and	z	directions.		The	dimensions	of	each	cell	are	defined	by	dx,	dy,	and	
dz,	 respectively.	 	Refer	 to	Figure	1.	 	Further,	a	given	cell	 is	defined	 locally	by	six	 independent	
surfaces,	and	each	surface	defined	by	four	points	or	nodes	in	a	given	plane.		Additionally,	plus	
and	minus	notations	are	used	to	define	the	unit	normal,	ñ,	with	respect	to	each	surface.		Next,	
each	 surface	 of	 each	 cell	 is	 defined	 by	 four	 nodes;	 namely,	 nodes-1,	 nodes-2,	 nodes-3	 and	
nodes-4.		Figure	1b.	Illustrates	the	plus	and	minus	notations	for	the	surfaces	with	normal	to	the	
z-direction.	 	 It	 is	of	 interest	to	note	that	the	use	of	the	object	oriented	programming	concept	
makes	it	very	convenient	to	use	identical	surface	objects	in	the	x	and	y	directions.	
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Fig.	1a:	Illustration	of	IDS	Spatial	Cell	 Fig.	 1b:	 Spatial	 Cell	with	Notation	
at	Surface	Nodes.	

Fig.	2:	 Illustration	of	 IDS	Control	
Volume	
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Analogous	to	 ‘spatial’	cells,	 the	concept	of	 ‘temporal’	cells	 is	also	 introduced.	 	The	 ‘temporal’	
cells	 are	 defined	 as	 rectangular	 prisms	 formed	 from	 the	 center	 points	 of	 eight	 neighboring	
‘spatial’	cells.		Finally,	a	fluid	control	volume	is	defined,	as	a	collection	of	eight	‘spatial’	cells	and	
one	temporal	cell.		A	typical	control	volume	is	illustrated	in	Figure	2.		Each	term	in	the	Navier-
Stokes	 equations	 (1)	 –	 (3)	 are	 applied	 systematically	 to	 each	 spatial	 cell.	 	 The	 mean	 value	
theorem	is	invoked,	and	a	set	of	algebraic	equations	representing	the	rate	of	change	of	mass,	
momentum,	 and	 energy	 associated	 with	 each	 spatial	 cell	 is	 derived.	 	 However,	 the	 rates	 of	
change	 of	 the	 time-fluxes	 are	 not	 associated	with	 any	 grid	 point,	 but	 with	 the	 ‘spatial’	 cell.		
When	the	spatial	cells	are	pieced	together	to	form	a	temporal	cell	within	the	control	volume,	
the	 arithmetic	 average	 of	 the	 rates	 of	 change	within	 the	 temporal	 cell	 then	 defines	 rates	 of	
change	at	the	ijk-point	of	interest.	

Application	of	the	Conservation	Laws	to	the	IDS	Formulation	

To	demonstrate	the	utility	of	the	IDS	approach	to	the	conservation	laws,	consider	a	typical	flow	
through	the	surfaces	of	an	 infinitesimal	control	volume,	as	 illustrated	 in	Figure	1.	 	 In	general,	
the	fluid	flows	arbitrary	in	all	directions.		Even	though	the	IDS	has	the	potential	to	solve	2D	as	
well	as	3D	fluid-flow	problems,	for	the	purpose	of	simplicity,	the	discussions	conducted	in	this	
paper	 are	 limited	 to	 2D	 fluid	 flow	problems.	 	 However,	when	describing	 the	 2D	 approach,	 a	
major	 challenge	 involves	 the	 conversion	 of	 the	 naturally	 3D	 conservation	 laws	 into	 their	 2D	
counterparts	 while	 maintaining	 the	 integrity	 of	 the	 3D	 flowfield	 effects.	 	 To	 achieve	 this	
outcome,	two	scientific	assumptions	are	warranted.	They	are	as	follows:	

	 1.	 Using	 the	 Cartesian	 system	of	 coordinates,	 the	 control	 volumes	 are	 chosen	 as	
infinitesimal	rectangular	prisms,	with	unit	normal,	ñ,	in	the	x,	y,	and	z	directions.	
	 2.	 It	 was	 assumed	 that	 no	 flow	 occurred	 in	 the	 z-direction.	 	 In	 addition,	 the	
dimension,	dz,	of	a	typical	control	volume	is	always	a	single	unit,	i.e.,	dz	=	1.	

These	assumptions	led	to	the	fact	that	the	fluid	properties	in	the	z-direction	across	any	control	
volume	are	constants	and	 the	net	 flow	of	mass,	momentum,	and	energy	 in	 the	 z-direction	 is	
always	 zero.	 	 Consequently,	 in	 all	 surface	 integration	 processes,	 all	 pertinent	 terms	 that	 are	
associated	with	 the	 z-directions	 as	 required	 by	 the	 conservation	 laws	 are	 neglected.	 	 Armed	
with	these	two	assumptions,	the	governing	equations	are	converted	into	their	non-dimensional	
form	and	applied	on	each	small	control	volume.	 	The	algebraic	 form	of	 the	rate	of	change	of	
mass	at	the	center	of	each	cell	are	evaluated	as	follow:	
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In	 evaluating	 the	 momentum	 and	 energy	 equations,	 careful	 manipulation	 of	 the	 governing	
equations	necessitates	IDS	related	details	in	the	evaluation	of	the	shear	terms.	Refer	to	Ref.	[1–
8]	for	greater	details.	
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Explicit	Time	Marching	

In	 the	2D	version	of	 the	 IDS	 formulation,	 the	solution	vector,	 t
jimU ,)( ,	 contains	 the	unknown	

variables,	 ,,, vur 	and	 .T 		Using	Taylor’s	expansion,	the	solution	can	be	constructed	based	of	
the	following	time	marching	scheme:	
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where	the	index	m	determine	the	length	of	the	unknown	vector.		In	the	IDS	formulations,	the	

solution	vector,	 t
jimU ,)( ,	 and	 its	 rate	of	 change,	 ,
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However,	 like	 all	 explicit	 time	 marching	 schemes,	 the	 time	 step tD 	 is	 subject	 to	 a	 stability	
criterion.	 	 To	 accurately	 determine	 the	 size	 of	 the	 time	 step,	 the	 following	 version	 of	 the	
Courant-Friedrichs-Lewy	(CFL)	criterion	is	used:		
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such	that,	 jia , 	 is	the	local	speed	of	sound,	 ( ) úû
ù

êë
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' Pr/,
3
4max rgµµn ,	C	 is	the	Courant	

number,	and	g 	is	the	specific	heat	ratio.	

EVALUATION	OF	IDS	GENERATED	FLOWFIELDS	
In	efforts	to	qualitatively	verify	and	validate	the	capability	of	the	IDS	scheme,	three	established	
fundamental	high	Reynolds	number	fluid	dynamics	problems	were	numerically	solved	and	their	
results	carefully	analyzed.	The	problems	of	interest	to	this	study	are	as	follows:	(i)	The	Inviscid-
Viscous	interaction	problem,	(ii)	The	Supersonic	Flow	over	Rearward-Facing	Step	Problem,	and	
(iii)	The	Hypersonic	flow	cross	jet	interaction	problem.	
The	Hypersonic	Inviscid-Viscous	Interaction	(IVI)	Problem	
The	 inviscid-viscous	 interaction	 (IVI)	 problem	 is	 defined	 as	 the	 emerging	 fluid	 dynamic	
interactions	between	an	inviscid	external	flow	and	the	developing	boundary	layer	at	the	leading	
edge	 region	 of	 a	 flat	 plate	 Ref,	 [12,	 13,	 21].	 	 Many	 fluid	 dynamists	 would	 agree	 that	 this	
interaction	is	complex	and	its	prediction	requires	numerical	simulations	with	very	high	fidelity	
Ref.	[13,	15,	18,	20,	21	].		The	flowfield	physics	of	interest	to	this	paper	are	usually	the	type	of	
effects	that	are	characterized	by	high	Reynolds	numbers.		Figure	3	provides	a	qualitative	sketch	
of	the	inviscid-viscous	interaction	phenomenon	that	is	developed	as	a	hypersonic	flow	traverses	
a	 flat	 plate.	 Due	 to	 the	 large	 temperature	 gradients	 associated	 with	 hypersonic	 flows,	 the	
developing	 boundary	 layer	 is	 relatively	 thicker	 when	 compared	 to	 those	 at	 lower	 speeds.		
Typically	the	density	within	the	hypersonic	boundary	 layer	 is	very	 low	as	a	result	of	 low	mass	
flow	 rates.	 Consequently,	 the	 streamlines	 in	 the	boundary	 layer	 are	displaced	outwardly	 and	
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the	 boundary	 layer	 thickens.	 In	 turn,	 the	 approaching	 hypersonic	 flow	 sees	 a	 'blunt	 body',	
generates	a	shock	wave	which	results	in	higher	external	pressures.	The	high	external	pressure	
now	 squeezes	 the	 compressible	 boundary	 layer	 and	 in	 turn	 flattens	 it,	 thus	 reducing	 its	
strength.	 The	 flatten	 boundary	 layer	 with	 now	 a	 weaker	 shock	 wave	 and	 lower	 pressure	
encourages	the	boundary	layer	to	once	again	thickens	and	the	interaction	cycle	continues21.	
	

	 	

Fig.	3:	Illustration	of	IVI	Problem21	 Fig.	4:	The	IVI	Computational	Domain	

IDS	Formulation	of	the	‘Inviscid-Viscous	Interaction’	Problem	
Consider	the	case	of	a	hypersonic	flow	over	the	leading	edge	of	a	flat	plate	at	a	Mach	number	
of	8.6,	Reynolds	number	of	3.475*10E+6,	a	Prandtl	number	of	0.70	and	a	specific	heat	ratio,	γ,	
of	 1.4.	 	 Using	 the	 IDS	 formulation	 described	 herein,	 the	 2-D	 simulation	 of	 the	 resulting	
hypersonic	IVI	phenomenon	is	conducted.		The	freestream	density,	temperature,	viscosity,	and	
pressure	 were	 assumed	 to	 be	 2.2497*10E-2	 kg/m3,	 360K,	 2.04E-5	 kg/ms,	 and	 2324.39Pa,	
respectively.	Further,	the	2D	computational	domain	was	developed	for	a	plate	length	of	1.0	m,	
and	 a	 height	 of	 0.09m.	 Figure	 4	 provides	 a	 visual	 representation	 of	 the	 IDS	 computational	
domain	 that	 encompasses	 the	 flat	 plate.	 	 The	 inflow	 and	 outflow	 conditions	 are	 satisfied	
through	 the	 techniques	discussed	earlier.	 	 For	 the	 surface	boundary	conditions	no	slip	at	 the	
wall	and	constant	wall	temperature	were	applied.	
	 The	 2D	 IDS	 formulation	 provides	 a	 set	 of	 four	 independent	 flowfield	 parameters	 that	
uniquely	describes	the	physics	associated	with	the	IVI	problem	of	 interest.	 	As	part	of	the	IDS	
evaluation,	grid	independence	studies	were	conducted	at	data	planes	along	the	leading	edge	of	
the	plate	and	at	the	quarter	cord	along	the	plate.		The	results	of	these	studies	are	reported	in	
Figures	5a	and	5b,	and	Figures	6a	and	6b,	respectively.	

Analyzing	the	IDS	Predictions	of	the	IVI	Phenomenon	
The	plots	illustrated	in	Figures	5a	and	5b	show	the	behavior	of	the	viscous	interaction	flowfield	
at	the	leading	edge	in	the	forms	of	u	and	v	velocity	components.		Similar	behavior	was	obtained	
for	the	density	and	the	temperature	during	the	 IDS	grid	 independence	study.	 	 In	this	study,	a	
set	of	five	independent	grids	with	node	resolutions	in	the	form:	201	by	201,	401	by	401,	601	by	
601,	801	by	801	and	1001	by	1001	were	used.		A	careful	observation	of	the	data	illustrated	in	
Figures	5a	and	5b	show	that	the	grid	set	of	1001	by	1001	delivers	a	converged	solution,	and	the	
grid	set	of	201	by	201	produced	the	worst	resolution.	
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Fig.	5a:	uVelocity	at	Leading	Edge	 Fig.	5b:	vVelocity	at	Leading	Edge	

	 	

Non-Dimensional Density

y-
ax
is

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Quarter Chord Density for Grid 1001 by 1001
Quarter Chord Density for Grid 801 by 801
Quarter Chord Density for Grid 601 by 601
Quarter Chord Density for Grid 401 by 401
Quarter Chord Density for Grid 201 by 201

Frame 001 ½ 09 Jun 2013 ½

	 Non-Dimensional Temperature

y-
ax
is

1 1.1 1.2 1.3 1.4 1.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Quarter Chord Temperature for Grid 1001 by 1001
Quarter Chord Temperature for Grid 601 by 601
Quarter Chord Temperature for Grid 801 by 801
Quarter Chord Temperature for Grid 401 by 401
Quarter Chord Temperature for Grid 201 by 201

Frame 001 ½ 09 Jun 2013 ½

	
Fig.	6a:	Density	at	Quarter	Chord	 Fig.	6b:	Temperature	at	Quarter	Chord	

	 	
	
	 The	 results	of	a	 second	set	of	grid	 independence	study,	conducted	at	 the	quarter	cord	of	
the	plate,	are	plotted	and	illustrated	in	Figures	6a	and	6b.		These	plots	show	the	behavior	of	the	
IVI	 flow	 field	 in	 the	 quarter	 cord	 plane	 along	 the	 plate	 in	 the	 forms	 of	 u	 and	 v	 velocity	
components,	density	and	temperature.		Similar	to	the	first	study,	a	set	of	five	independent	grids	
with	node	resolutions	in	the	form:	201	by	201,	401	by	401,	601	by	601,	801	by	801	and	1001	by	
1001	were	used.	 	 The	data	 sets	 illustrated	 in	 Figures	6a	and	6b	 confirms	 that	 the	grid	 set	of	
1001	by	1001	delivers	a	converged	solution,	and	the	grid	set	of	201	by	201	produced	the	worst	
resolution.	 	 In	 this	 case,	 however,	 it	 appears	 that	 the	 grids	 uniformly	 converge	 to	 the	 best	
resolution	with	increasing	refinement.	
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The	Supersonic	Flow	over	Rearward-Facing	Step	Problem	
The	IDS	procedure	was	used	to	simulate	the	supersonic	flow	over	a	rearward-facing	step	(RFS)	
and	its	results	compared	to	the	experimental	analysis	conducted	by	McDaniel	et	al22.		Refer	to	
the	illustration	presented	in	Figure	7.		As	seen	in	Figure	7,	several	complex	flow	features,	such	
as,	 including	 boundary	 layer	 separations	 and	 reattachment,	 and	 shock	 wave-boundary	 layer	
interactions	can	be	observed	Ref.	[22–29].		In	the	supersonic	RFS	problem,	the	flow	is	expected	
to	create	an	expansion	fan	as	it	negotiates	the	sharp	turn	and	a	separation	bubble	just	after	the	
turn.	 	 In	 addition,	 the	 bubble	 and	 the	 fan	 interacts	 with	 a	 free	 shear	 layer,	 which	 in	 turns	
interacts	with	a	developing	boundary	layer	at	the	base	of	the	step	to	produce	an	interesting	set	
of	 flow	 field	 features.	 	 As	 the	 flow	 expands	 and	 interacts	 with	 both	 the	 shear	 layer	 and	
boundary	 layer,	a	 reattachment	shock	 is	 formed	that	separates	 the	recirculation	bubble	 from	
the	boundary	layer.		This	reattachment	shock	forces	the	flow	to	become	parallel	to	the	walls.		It	
is	 of	 interest	 to	 note	 that	 the	 flow	 physics	 illustrated	 in	 Figure	 7	 was	 also	 experimentally	
observed	by	a	large	number	of	credible	researchers	Ref.	[22–29].	

sa 	

	
Fig.	7:	Supersonic	RFS	Flow	field	features	 Fig.	8:	Grid	convergence	studies	

Rearward	Facing	Step	Grid	Convergence	Studies	
For	 this	 IDS	 investigation,	 steady	 state	 condition	 was	 considered	 to	 be	 reached	 when	 the	
maximum	residual	of	the	mass,	momentum,	and	the	energy	fluxes	at	each	 internal	grid	point	
varied	less	than	10	x	10-5.		The	residual	was	defined	as	the	difference	between	the	new	and	the	
old	 value	 of	 the	 flux	 for	 each	 two	 consecutive	 time	 steps.	 	 The	 grid	 convergence	 study	was	
conducted	on	three	sets	of	grids;	namely,	a	501	by	501,	a	1001	by	1001	and	a	2001	by	2001	grid	
systems.		The	residual	data	obtained	from	the	grid	convergence	study	are	illustrated	in	Figure	8.	
Figure	8	shows	the	error	decreases	with	increasing	levels	of	iterations,	and	that	error	levels	of	
10-6	 and	 smaller	 were	 obtained.	 	 During	 the	 grid	 convergence	 study,	 the	 non-dimensional	
pressure,	 temperature,	 and	 velocity	 vectors	 profiles	were	 observed	 as	 functions	 of	 the	 non-
dimensional	 height	 at	 fixed	 x-locations.	 	 The	 profile	 of	 RFS	 flow	 fields	 parameters	 at	 an	 x	 =	
5.221Hstep	location	are	presented	in	Figures	9a	and	9b.	
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Fig.	9a:	Supersonic	RFS	Flow	field	features	 Fig.	9b:	Grid	convergence	studies	

	

Rearward	Facing	Step	IDS-Experimental	Comparative	Study	
For	quantitative	comparisons	of	the	IDS	and	experimental	data	Ref	[22],	 line	plots	were	used.	
Plots	 of	 selected	 flow	 field	 quantities	 were	 compared	 at	 x-locations:	 x	 =	 2.465Hstep,	 x	 =	
3.388Hstep,	 x	 =	 5.2208Hstep,	 x	 =	 6.465Hstep,	 x	 =	 10.155Hstep.	 	 The	 flow	 field	 profiles	 of	 non-
dimensional	pressure,	temperature,	u-	and	v-velocity	components	are	illustrated	in	Figures	10a	
and	 10b.	 	 Figures	 10a	 and	 10b	 illustrate	 the	 behavior	 of	 the	 u-	 and	 v-velocity	 components,	
respectively.		Similar	behaviors	were	obtained	for	the	pressure	and	the	temperature	profiles	at	
these	locations.	
	

	
	

Fig.	10a:	Non-dimensional	u-velocity	Comparisons	 Fig.	10b:	Non-dimensional	v-velocity	Comparisons	

As	observed,	the	pressure	profile	generated	by	the	IDS	display	higher	values	when	compared	to	
the	experiment	at	the	center	of	the	domain.		Recall,	this	discrepancy	is	due	to	the	leading	edge	
shocks.	 	 As	 the	 flow	 moves	 towards	 the	 edge	 of	 the	 RFS,	 the	 experimental	 and	 numerical	
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pressure	distributions	appeared	to	be	very	similar.		This	is	due	to	the	fact	that	the	expansion	fan	
is	 not	 greatly	 influenced	 by	 the	weak	 leading	 edge	 shocks.	 	 In	 the	 temperature	 and	 velocity	
profiles,	the	numerical	and	experimental	data	are	in	good	agreements.		This	is	expected,	since	
the	leading	edge	shocks	and	their	interactions	are	very	weak	and	their	influence	does	not	affect	
temperature	and	velocity	profiles.		It	is	noteworthy	to	point	out	that	the	greatest	disagreement	
in	the	two	approaches	occurs	 in	the	boundary	 layers	and	at	the	walls.	 	 In	the	case	of	the	 IDS	
approach,	 it	 is	 noted	 that	 the	 temperature	 profile	 was	 set	 to	 adiabatic,	 and	 the	 actual	
temperature	of	the	wall	was	not	taken	into	account.	

The	Sonic	Jet	Cross	Flow	Interaction	Problem	
The	study	presented	herein	focuses	on	the	case	of	the	normal	mass	 injection	at	sonic	speeds	
through	a	narrow	opening	on	a	plate	that	is	experiencing	supersonic	flow	parallel	to	its	surface.	
The	flowfield	boundary	conditions	of	interest	to	this	problem	are:	(a)	the	flow	travels	from	left	
to	right,	and	(b)	the	freestream	conditions	are	P=1478.26	Pa,	T=57.23	K	and	M=6.0.		The	main	
flow	features	expected	 from	this	analysis	are	schematically	shown	 in	Figure	11	Ref	 [30].	 	The	
sonic	cross	flow	interactions	are	expected	to	generate	the	following	features:	lambda	and	bow	
shocks,	 separation	 shocks,	an	 incoming	 thin	boundary	 layer,	a	distorted	barrel	 shock	and	 the	
envelope	 of	 the	 jet	 shear	 layer,	 along	 with	 regions	 of	 separated/recirculation	 flows.	 	 As	
described	in	Ref.	[30–34],	the	developing	flow	field	will	result	in	a	complex	set	of	aerodynamic	
flow	structures	similar	to	the	ones	illustrated	in	Figure	11.	

	
Figure.	11:	A	Schematic	Illustration	of	the	Mach	Jet	Cross	Flow	Interaction,	Ref.	30	

	
Once	 again,	 the	 IDS	 formulation	 is	 qualitatively	 evaluated	with	 respect	 to	 its	 capability	 to	

reproduce	 the	 physics	 associated	 with	 this	 complex	 flowfield	 simulation.	 	 Further,	 the	 2D	
computational	domain	was	developed	for	a	unit	non-dimensional	plate	length	and	a	height	of	
0.6	m	and	0.12	m,	respectively.		The	inflow	and	outflow	conditions	were	prescribed	through	the	
use	of	the	techniques	discussed	earlier.		The	surface	boundary	conditions	were	set	to	'no	slip'	at	
the	wall,	and	to	adiabatic	wall,	while	the	wall	density	distribution	was	predicted.		The	mass	flow	
injection	parameters	are	 set	as	 follows:	 injection	 speed	was	 set	 to	Mach	1,	and	 the	pressure	
ratio	was	set	to	94.49.	
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The	solution	set	to	the	Naver-Stokes	equations	delivered	by	the	IDS	formulation	are	provided	
in	 the	 four	plots	 illustrated	 in	 Figures	 12a	 -	 12d.	 	 These	plots	were	developed	 from	 the	 four	
independent	 flowfield	 parameters	 associated	 with	 the	 IDS	 numerical	 procedure.	 	 In	
combination,	these	parameters	uniquely	describes	the	physics	associated	with	the	problem	of	
interest.	 	 In	the	case	of	the	of	the	sonic	 jet	 interaction	problem,	the	solution	are	described	in	
Figures	 12a	 –	 12d.	 	 Figures	 12a	 and	 12b	 illustrate	 a	 close-up	 of	 the	 flowfield	 physics	 in	 the	
region	of	the	emerging	sonic	jet	by	highlighting	particle	stream	traces	over	the	contour	plots	of	
the	 u	 and	 v	 velocity	 components,	 respectively.	 	 In	 a	 similar	 manner,	 instead	 of	 using	 the	
primitive	 variables,	 density,	 the	 pressure	 and	Mach	number	 distributions	 are	 used	 in	 Figures	
12c	and	12d,	respectively.		In	these	plots,	the	pressure	and	Mach	number	distributions	are	used	
to	highlighted	flowfield	physics	in	the	vicinity	of	the	emerging	sonic	jet.	

  
Fig.	12a:	Stream	traces	with	u-velocity	Contours	 Fig.	12b:	Stream	traces	with	v-velocity	Contours	
 

 

 

 
Fig.	12c:	Sonic	Jet	Pressure	Contours	 Fig.	12d:	Sonic	Jet	Mach	Contours	
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It	can	be	clearly	observed	that	the	details	of	the	flowfield	physics,	as	explained	in	Figure	11,	are	
captured.		Further,	it	is	of	interest	to	note	that	the	details	of	the	many	recirculation	zones	along	
with	 the	 separation	 and	 re-attachment	 points	 are	 correctly	 predicted.	 	 On	 the	 other	 hand,	
Figures	12c	and	12d	predict	the	local	pressures	and	Mach	numbers	distribution	in	the	vicinity	of	
the	injection	region.		Here	again	it	can	be	observed	the	recirculation	regions,	the	Mach	disk,	the	
local	shock	waves	and	expansions	fans	are	all	clearly	captured.		Overall,	a	careful	analysis	of	the	
IDS	solution	for	the	Sonic	Jet	Cross	Flow	problem,	showed	that	the	IDS	formulation	was	able	to	
capture	 the	 lambda	 shocks,	 including	 the	 separation	 and	 bow	 shocks.	 	 The	 barrel	 and	
recompression	 shocks	 ,	 as	 well	 as	 the	 expansion	 fan	 are	 all	 clearly	 predicted.	 	 Of	 greater	
interest,	 is	 the	 fact	 that	 the	 IDS	 was	 able	 to	 predict	 the	 primary	 and	 secondary	 upstream	
vortexes,	as	well	as,	the	primary	downstream	vortex.	

CONCLUSIONS	
A	 numerical	 procedure	 for	 solving	 the	 2D	 Navier-Stokes	 equations	 was	 developed	 and	
validated.		This	numerical	procedure	is	called	the	Integro-Differential	Scheme	(IDS).	 	Its	uses	a	
Method	of	Consistent	Averages	(MCA)	to	evaluate	the	spatial	quantities	in	the	flowfield	as	well	
as	to	provide	the	information	need	to	construct	the	explicit	time	marching	solution.		During	the	
development	 of	 the	 IDS	 formulation,	 the	 concept	 of	 a	 special	 control	 volume,	 consisting	 of	
‘spatial’	and	‘temporal’	cells	were	introduced.		The	integral	form	of	the	Navier-Stokes	equations	
were	 applied	 these	 numerical	 cell-concepts,	 and	 a	 favorable	 set	 of	 algebraic	 equations	were	
developed.	 	The	numerical	procedure	resulting	from	the	IDS	transformation	overcame	several	
limitations	of	the	traditional	finite	volume	schemes.		
In	 this	 research	 effort,	 the	 IDS	 numerical	 procedure	was	 preliminary	 qualitatively	 validated	

through	 the	 use	 of	 three	 established	 boundary	 layer	 interaction	 problems,	 each	with	 known	
complexities	within	 its	 flowfield.	 	 Currently,	 additional	 efforts	 are	underway	 to	quantitatively	
validate	 the	 IDS	code.	The	 results	of	 those	studies	will	be	 reported	at	 the	2018	AIAA	SciTech	
meetings.	
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